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SELF-SIMILARITY OF VIBRATIONAL MOTION

IN A RESISTANT MEDIUM

UDC 534S. A. Gerasimov

Calculation results and an approximate description of the mean velocity of vibrational motion in a
medium with drag proportional to velocity are presented as a function of various parameters charac-
terizing the system.

Introduction. Vibrational transport [1] is, undoubtedly, a special form of motion. The principle of excita-
tion of this motion is unconventional. According to the main law of dynamics of a system of bodies, internal forces
do not affect the position of the center of mass [2]. Nevertheless, they may affect external forces [3], which are fric-
tion forces [4–6] in the case of vibrational motion if a body moves over the surface or drag forces [7] if a mechanical
system moves in a medium. The principle of vibrational displacement is based on this property. The papers cited
do not form a complete list of theoretical results in this field. Vibrational motion of a system of bodies in a resistant
medium is less adequately studied, and an attempt was made to remove this drawback only in [7]. It is of interest
to study vibrational motion in a medium with drag proportional to velocity rather than to its square. In this
case, however, it is impossible to solve the corresponding differential equations by analytical methods. Therefore,
approximate solutions may turn useful, which allow one to evaluate comparatively easily the efficiency of vibrational
motion with drag proportional to the velocity of the system of bodies relative to the medium.

Diagram and Equation of Motion of a Vibromotive Engine. A vibromotive engine is an asymmetric
platform 1 of mass M immersed partially or completely in a medium L and a massive body 2 of mass m that
performs nondecaying, not necessarily harmonic oscillations in the reference system X ′O′Y ′ fitted to the platform
(Fig. 1). It is assumed that the platform and the body do not move vertically. Therefore, it makes sense to consider
only forces with horizontal components. These are the force Fm−M acting on the platform from the body, the
force FM−m acting on the body from the platform, and the drag force of the medium F r with drag coefficients λ+

and λ− corresponding to platform motion in the positive (v > 0) and negative (v < 0) directions of the X axis:

F r =
{
−λ+v for v > 0,
−λ−v for v < 0.

Let x be a vector determining the platform position relative to the medium-fixed reference system and xm
be a vector that describes the position of a body of mass m relative to the platform. The equations of motion of
the platform and the body are

M
d2x

dt2
= F r + Fm−M , m

d2(x+ xm)
dt2

= FM−m. (1)

Taking into account the condition Fm−M = −FM−m, we bring system (1) to the following form:

d2

dt2
[Mx+m(x+ xm)] = F r. (2)

Equation (2) is the law of motion of the center of mass of the system. Results of solving the differential inhomoge-
neous equation of motion (2) are described in the present work.
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Fig. 1. Schematic of a vibromotive engine.

Scaling of the Equation. Let M0 = M + m be the total mass of the system. In the case of harmonic
oscillations of the body of mass m, the dependence of the coordinate of this body relative to the platform on time
is described by the law xm = a cos (2πt/T ). In this case, the use of new dimensionless variables

ζ =
M0

4π2ma
x, τ =

λ+

M0
t, ϑ =

M2
0

4π2maλ+

dx

dt
, θ =

λ+

M0
T

allows us to reduce the number of quantities that determine the motion of the system. For a > 0, the equation of
motion acquires the form

d2ζ

dτ2
+
(1− δ

2
sign

(dζ
dτ

)
+

1 + δ

2

)dζ
dτ
− 1
θ2

cos
2πτ
θ

= 0, (3)

where δ = λ−/λ+ is a parameter of asymmetry of the system; signϑ = 1 for ϑ > 0 and signϑ = −1 for ϑ < 0.
The dependences ζ(τ) and ϑ(τ) for δ = 5 and θ = 1 are plotted in Fig. 2. Nevertheless, the calculation

results for the mean velocity 〈v〉 of vibrational motion for a fixed number of periods n seems to be of greater interest:

〈v〉 =
1
nT

t+nT∫
t

v(t) dt. (4)

For high values of t, which are significantly greater than the motion-stabilization time, the mean velocity is inde-
pendent of this parameter, which may be used in choosing the value of t for numerical calculations of the mean
velocity (4). The value of n is responsible only for the accuracy of determining 〈v〉. In most cases, it is sufficient to
have n = 1. The corresponding dimensionless reduced value of 〈ϑ〉 depends only on the reduced period θ and the
parameter of asymmetry δ.

Self-Similar Motion. Without solving the differential equation (3), we can find an important property,
namely: for very high (δ � 1) and very low (δ � 1) values of the parameter of asymmetry δ, the products ϑθ2

and ϑδθ2 depend on τ and either on θ and δθ, respectively. The mean velocity is no longer dependent on time, i.e.,
on τ . High values of the parameter of asymmetry (δ � 1) correspond to the motion in the positive direction of the
X axis only. In this case, we have sign (ϑθ2) = 1, and the quantity 〈ϑ〉θ2 depends only on θ. For very small values
of the parameter of asymmetry (δ � 1), the motion of the platform in the positive direction of the X axis becomes
impossible, which corresponds to the condition sign (ϑθ2) = −1. In this case, the value of 〈ϑ〉θ2δ should depend only
on δθ. The same variant of motion can be described by the formal substitution of 1/δ instead of δ. It follows from
here that, for high values of θ, the parameter of asymmetry of the system δ should be present in the solution of the
differential equation (3) only in the form of combinations δ−1, δ+1, 1−1/δ, and 1+1/δ. Simultaneous substitution
of λ− for λ+ and λ+ for λ−, other conditions being equal, in particular, for the same value of T , corresponds to
the motion of the platform in the opposite direction with the same mean velocity 〈v〉 → −〈v〉. The combination
〈ϑ〉θ2/(1 − 1/δ) corresponds to the change in the velocity direction for λ− ↔ λ+ and the conditions given above.
Similarly, the combination θ/(1 + 1/δ) corresponds to a symmetric transformation of the oscillation period T ↔ T

for λ+ ↔ λ−. The approximate character of such an approach should be specially emphasized. First, this method is
asymptotically accurate only for very high and very low values of the parameter of asymmetry. Second, very simple
combinations of the quantities 〈ϑ〉, θ, and δ are written above, which, strictly speaking, testifies to the empirical
approach to the solution of the problem. Third, the above arguments refer to the so-called transformations of
symmetry, which can be accurate only for a rather limited range of problems [8].

Thus, an approximate self-similar dependence that describes the dependence of the mean velocity of vi-
brational motion on all parameters of the system should have the form 〈ϑ〉θ2/(1 − 1/δ) = f(θ/(1 + 1/δ)), where
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Fig. 2 Fig. 3

Fig. 2. Dependence of the coordinate ζ (curve 1) and velocity ϑ (curve 2) on the time τ for δ = 5
and θ = 1.

Fig. 3. Self-similar dependence of the mean reduced velocity of vibrational motion 〈ϑθδ〉 on the
reduced period of vibrations θδ and the parameter δ: the solid curve is dependence (5), the open
and filled points show the solutions of Eq. (3) for 0.1 6 θ 6 64 and 0.1 6 θ < 1, respectively.

f is a certain function to be determined. For this purpose, it suffices to represent the solution of the differential
equation (3) in the form of the dependence of 〈ϑθδ〉 = 〈ϑ〉θ2/(1 − 1/δ) on θδ = θ/(1 + 1/δ). For the given values
of δ and θδ, it allows one not only to find the value of the mean velocity but also to reconstruct the value of the
reduced period θ. This dependence is plotted in Fig. 3 for 0.1 6 θ 6 64 and 1.1 6 δ 6 16. The following variant of
approximation of this dependence may be proposed, which corresponds to an asymptotic dependence of the mean
velocity on the period of oscillations and parameter of asymmetry at high values of θ:

〈ϑ〉 =
2δ(δ − 1)

{(δ + 1)3 + 64[θδ(δ + 1)]3/2 + 31θ3δ3/2}2/3
. (5)

Certainly, the problem may be solved in a different way, for example, by approximating the two-dimensional
dependence of 〈ϑ〉 on θ and δ. Nevertheless, such an approach is valid only under certain restrictions on the
parameters of the problem. The approach proposed yields rather accurate results, at least for all θ > 1 and
all values of the parameter of asymmetry δ. For small values of the reduced period (θ < 1), the principle of
establishment of self-similarity is significantly different from that described here. Hence, for θ < 1, it makes sense to
use approximation (5) only for estimation and qualitative description of vibrational motion. Therefore, the results
of the solution of the equation of motion (3) for θ > 0.1 are also shown in Fig. 3.
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